Coverage for /builds/ase/ase/ase/io/extxyz.py : 78.75%

Hot-keys on this page
r m x p toggle line displays
j k next/prev highlighted chunk
0 (zero) top of page
1 (one) first highlighted chunk
1"""
2Extended XYZ support
4Read/write files in "extended" XYZ format, storing additional
5per-configuration information as key-value pairs on the XYZ
6comment line, and additional per-atom properties as extra columns.
8Contributed by James Kermode <james.kermode@gmail.com>
9"""
12from itertools import islice
13import re
14import warnings
15from io import StringIO, UnsupportedOperation
16import json
18import numpy as np
19import numbers
21from ase.atoms import Atoms
22from ase.calculators.calculator import all_properties, Calculator
23from ase.calculators.singlepoint import SinglePointCalculator
24from ase.spacegroup.spacegroup import Spacegroup
25from ase.parallel import paropen
26from ase.constraints import FixAtoms, FixCartesian
27from ase.io.formats import index2range
28from ase.utils import reader
30__all__ = ['read_xyz', 'write_xyz', 'iread_xyz']
32PROPERTY_NAME_MAP = {'positions': 'pos',
33 'numbers': 'Z',
34 'charges': 'charge',
35 'symbols': 'species'}
37REV_PROPERTY_NAME_MAP = dict(zip(PROPERTY_NAME_MAP.values(),
38 PROPERTY_NAME_MAP.keys()))
40KEY_QUOTED_VALUE = re.compile(r'([A-Za-z_]+[A-Za-z0-9_-]*)'
41 + r'\s*=\s*["\{\}]([^"\{\}]+)["\{\}]\s*')
42KEY_VALUE = re.compile(r'([A-Za-z_]+[A-Za-z0-9_]*)\s*='
43 + r'\s*([^\s]+)\s*')
44KEY_RE = re.compile(r'([A-Za-z_]+[A-Za-z0-9_-]*)\s*')
46UNPROCESSED_KEYS = ['uid']
48SPECIAL_3_3_KEYS = ['Lattice', 'virial', 'stress']
50# partition ase.calculators.calculator.all_properties into two lists:
51# 'per-atom' and 'per-config'
52per_atom_properties = ['forces', 'stresses', 'charges', 'magmoms', 'energies']
53per_config_properties = ['energy', 'stress', 'dipole', 'magmom', 'free_energy']
56def key_val_str_to_dict(string, sep=None):
57 """
58 Parse an xyz properties string in a key=value and return a dict with
59 various values parsed to native types.
61 Accepts brackets or quotes to delimit values. Parses integers, floats
62 booleans and arrays thereof. Arrays with 9 values whose name is listed
63 in SPECIAL_3_3_KEYS are converted to 3x3 arrays with Fortran ordering.
65 If sep is None, string will split on whitespace, otherwise will split
66 key value pairs with the given separator.
68 """
69 # store the closing delimiters to match opening ones
70 delimiters = {
71 "'": "'",
72 '"': '"',
73 '{': '}',
74 '[': ']'
75 }
77 # Make pairs and process afterwards
78 kv_pairs = [
79 [[]]] # List of characters for each entry, add a new list for new value
80 cur_delimiter = None # push and pop closing delimiters
81 escaped = False # add escaped sequences verbatim
83 # parse character-by-character unless someone can do nested brackets
84 # and escape sequences in a regex
85 for char in string.strip():
86 if escaped: # bypass everything if escaped
87 kv_pairs[-1][-1].append(char)
88 escaped = False
89 elif char == '\\': # escape the next thing
90 escaped = True
91 elif cur_delimiter: # inside brackets
92 if char == cur_delimiter: # found matching delimiter
93 cur_delimiter = None
94 else:
95 kv_pairs[-1][-1].append(char) # inside quotes, add verbatim
96 elif char in delimiters:
97 cur_delimiter = delimiters[char] # brackets or quotes
98 elif (sep is None and char.isspace()) or char == sep:
99 if kv_pairs == [[[]]]: # empty, beginning of string
100 continue
101 elif kv_pairs[-1][-1] == []:
102 continue
103 else:
104 kv_pairs.append([[]])
105 elif char == '=':
106 if kv_pairs[-1] == [[]]:
107 del kv_pairs[-1]
108 kv_pairs[-1].append([]) # value
109 else:
110 kv_pairs[-1][-1].append(char)
112 kv_dict = {}
114 for kv_pair in kv_pairs:
115 if len(kv_pair) == 0: # empty line
116 continue
117 elif len(kv_pair) == 1: # default to True
118 key, value = ''.join(kv_pair[0]), 'T'
119 else: # Smush anything else with kv-splitter '=' between them
120 key, value = ''.join(kv_pair[0]), '='.join(
121 ''.join(x) for x in kv_pair[1:])
123 if key.lower() not in UNPROCESSED_KEYS:
124 # Try to convert to (arrays of) floats, ints
125 split_value = re.findall(r'[^\s,]+', value)
126 try:
127 try:
128 numvalue = np.array(split_value, dtype=int)
129 except (ValueError, OverflowError):
130 # don't catch errors here so it falls through to bool
131 numvalue = np.array(split_value, dtype=float)
132 if len(numvalue) == 1:
133 numvalue = numvalue[0] # Only one number
134 value = numvalue
135 except (ValueError, OverflowError):
136 pass # value is unchanged
138 # convert special 3x3 matrices
139 if key in SPECIAL_3_3_KEYS:
140 if not isinstance(value, np.ndarray) or value.shape != (9,):
141 raise ValueError("Got info item {}, expecting special 3x3 "
142 "matrix, but value is not in the form of "
143 "a 9-long numerical vector".format(key))
144 value = np.array(value).reshape((3, 3), order='F')
146 # parse special strings as boolean or JSON
147 if isinstance(value, str):
148 # Parse boolean values: 'T' -> True, 'F' -> False,
149 # 'T T F' -> [True, True, False]
150 str_to_bool = {'T': True, 'F': False}
152 try:
153 boolvalue = [str_to_bool[vpart] for vpart in
154 re.findall(r'[^\s,]+', value)]
155 if len(boolvalue) == 1:
156 value = boolvalue[0]
157 else:
158 value = boolvalue
159 except KeyError:
160 # parse JSON
161 if value.startswith("_JSON "):
162 d = json.loads(value.replace("_JSON ", "", 1))
163 value = np.array(d)
164 if value.dtype.kind not in ['i', 'f', 'b']:
165 value = d
167 kv_dict[key] = value
169 return kv_dict
172def key_val_str_to_dict_regex(s):
173 """
174 Parse strings in the form 'key1=value1 key2="quoted value"'
175 """
176 d = {}
177 s = s.strip()
178 while True:
179 # Match quoted string first, then fall through to plain key=value
180 m = KEY_QUOTED_VALUE.match(s)
181 if m is None:
182 m = KEY_VALUE.match(s)
183 if m is not None:
184 s = KEY_VALUE.sub('', s, 1)
185 else:
186 # Just a key with no value
187 m = KEY_RE.match(s)
188 if m is not None:
189 s = KEY_RE.sub('', s, 1)
190 else:
191 s = KEY_QUOTED_VALUE.sub('', s, 1)
193 if m is None:
194 break # No more matches
196 key = m.group(1)
197 try:
198 value = m.group(2)
199 except IndexError:
200 # default value is 'T' (True)
201 value = 'T'
203 if key.lower() not in UNPROCESSED_KEYS:
204 # Try to convert to (arrays of) floats, ints
205 try:
206 numvalue = []
207 for x in value.split():
208 if x.find('.') == -1:
209 numvalue.append(int(float(x)))
210 else:
211 numvalue.append(float(x))
212 if len(numvalue) == 1:
213 numvalue = numvalue[0] # Only one number
214 elif len(numvalue) == 9:
215 # special case: 3x3 matrix, fortran ordering
216 numvalue = np.array(numvalue).reshape((3, 3), order='F')
217 else:
218 numvalue = np.array(numvalue) # vector
219 value = numvalue
220 except (ValueError, OverflowError):
221 pass
223 # Parse boolean values: 'T' -> True, 'F' -> False,
224 # 'T T F' -> [True, True, False]
225 if isinstance(value, str):
226 str_to_bool = {'T': True, 'F': False}
228 if len(value.split()) > 1:
229 if all([x in str_to_bool.keys() for x in value.split()]):
230 value = [str_to_bool[x] for x in value.split()]
231 elif value in str_to_bool:
232 value = str_to_bool[value]
234 d[key] = value
236 return d
239def escape(string):
240 if (' ' in string or
241 '"' in string or "'" in string or
242 '{' in string or '}' in string or
243 '[' in string or ']' in string):
244 string = string.replace('"', '\\"')
245 string = '"%s"' % string
246 return string
249def key_val_dict_to_str(dct, sep=' '):
250 """
251 Convert atoms.info dictionary to extended XYZ string representation
252 """
254 def array_to_string(key, val):
255 # some ndarrays are special (special 3x3 keys, and scalars/vectors of
256 # numbers or bools), handle them here
257 if key in SPECIAL_3_3_KEYS:
258 # special 3x3 matrix, flatten in Fortran order
259 val = val.reshape(val.size, order='F')
260 if val.dtype.kind in ['i', 'f', 'b']:
261 # numerical or bool scalars/vectors are special, for backwards
262 # compat.
263 if len(val.shape) == 0:
264 # scalar
265 val = str(known_types_to_str(val))
266 elif len(val.shape) == 1:
267 # vector
268 val = ' '.join(str(known_types_to_str(v)) for v in val)
269 return val
271 def known_types_to_str(val):
272 if isinstance(val, bool) or isinstance(val, np.bool_):
273 return 'T' if val else 'F'
274 elif isinstance(val, numbers.Real):
275 return '{}'.format(val)
276 elif isinstance(val, Spacegroup):
277 return val.symbol
278 else:
279 return val
281 if len(dct) == 0:
282 return ''
284 string = ''
285 for key in dct:
286 val = dct[key]
288 if isinstance(val, np.ndarray):
289 val = array_to_string(key, val)
290 else:
291 # convert any known types to string
292 val = known_types_to_str(val)
294 if val is not None and not isinstance(val, str):
295 # what's left is an object, try using JSON
296 if isinstance(val, np.ndarray):
297 val = val.tolist()
298 try:
299 val = '_JSON ' + json.dumps(val)
300 # if this fails, let give up
301 except TypeError:
302 warnings.warn('Skipping unhashable information '
303 '{0}'.format(key))
304 continue
306 key = escape(key) # escape and quote key
307 eq = "="
308 # Should this really be setting empty value that's going to be
309 # interpreted as bool True?
310 if val is None:
311 val = ""
312 eq = ""
313 val = escape(val) # escape and quote val
315 string += '%s%s%s%s' % (key, eq, val, sep)
317 return string.strip()
320def parse_properties(prop_str):
321 """
322 Parse extended XYZ properties format string
324 Format is "[NAME:TYPE:NCOLS]...]", e.g. "species:S:1:pos:R:3".
325 NAME is the name of the property.
326 TYPE is one of R, I, S, L for real, integer, string and logical.
327 NCOLS is number of columns for that property.
328 """
330 properties = {}
331 properties_list = []
332 dtypes = []
333 converters = []
335 fields = prop_str.split(':')
337 def parse_bool(x):
338 """
339 Parse bool to string
340 """
341 return {'T': True, 'F': False,
342 'True': True, 'False': False}.get(x)
344 fmt_map = {'R': ('d', float),
345 'I': ('i', int),
346 'S': (object, str),
347 'L': ('bool', parse_bool)}
349 for name, ptype, cols in zip(fields[::3],
350 fields[1::3],
351 [int(x) for x in fields[2::3]]):
352 if ptype not in ('R', 'I', 'S', 'L'):
353 raise ValueError('Unknown property type: ' + ptype)
354 ase_name = REV_PROPERTY_NAME_MAP.get(name, name)
356 dtype, converter = fmt_map[ptype]
357 if cols == 1:
358 dtypes.append((name, dtype))
359 converters.append(converter)
360 else:
361 for c in range(cols):
362 dtypes.append((name + str(c), dtype))
363 converters.append(converter)
365 properties[name] = (ase_name, cols)
366 properties_list.append(name)
368 dtype = np.dtype(dtypes)
369 return properties, properties_list, dtype, converters
372def _read_xyz_frame(lines, natoms, properties_parser=key_val_str_to_dict,
373 nvec=0):
374 # comment line
375 line = next(lines).strip()
376 if nvec > 0:
377 info = {'comment': line}
378 else:
379 info = properties_parser(line) if line else {}
381 pbc = None
382 if 'pbc' in info:
383 pbc = info['pbc']
384 del info['pbc']
385 elif 'Lattice' in info:
386 # default pbc for extxyz file containing Lattice
387 # is True in all directions
388 pbc = [True, True, True]
389 elif nvec > 0:
390 # cell information given as pseudo-Atoms
391 pbc = [False, False, False]
393 cell = None
394 if 'Lattice' in info:
395 # NB: ASE cell is transpose of extended XYZ lattice
396 cell = info['Lattice'].T
397 del info['Lattice']
398 elif nvec > 0:
399 # cell information given as pseudo-Atoms
400 cell = np.zeros((3, 3))
402 if 'Properties' not in info:
403 # Default set of properties is atomic symbols and positions only
404 info['Properties'] = 'species:S:1:pos:R:3'
405 properties, names, dtype, convs = parse_properties(info['Properties'])
406 del info['Properties']
408 data = []
409 for ln in range(natoms):
410 try:
411 line = next(lines)
412 except StopIteration:
413 raise XYZError('ase.io.extxyz: Frame has {} atoms, expected {}'
414 .format(len(data), natoms))
415 vals = line.split()
416 row = tuple([conv(val) for conv, val in zip(convs, vals)])
417 data.append(row)
419 try:
420 data = np.array(data, dtype)
421 except TypeError:
422 raise XYZError('Badly formatted data '
423 'or end of file reached before end of frame')
425 # Read VEC entries if present
426 if nvec > 0:
427 for ln in range(nvec):
428 try:
429 line = next(lines)
430 except StopIteration:
431 raise XYZError('ase.io.adfxyz: Frame has {} cell vectors, '
432 'expected {}'.format(len(cell), nvec))
433 entry = line.split()
435 if not entry[0].startswith('VEC'):
436 raise XYZError('Expected cell vector, got {}'.format(entry[0]))
438 try:
439 n = int(entry[0][3:])
440 except ValueError as e:
441 raise XYZError('Expected VEC{}, got VEC{}'
442 .format(ln + 1, entry[0][3:])) from e
443 if n != ln + 1:
444 raise XYZError('Expected VEC{}, got VEC{}'
445 .format(ln + 1, n))
447 cell[ln] = np.array([float(x) for x in entry[1:]])
448 pbc[ln] = True
449 if nvec != pbc.count(True):
450 raise XYZError('Problem with number of cell vectors')
451 pbc = tuple(pbc)
453 arrays = {}
454 for name in names:
455 ase_name, cols = properties[name]
456 if cols == 1:
457 value = data[name]
458 else:
459 value = np.vstack([data[name + str(c)]
460 for c in range(cols)]).T
461 arrays[ase_name] = value
463 symbols = None
464 if 'symbols' in arrays:
465 symbols = [s.capitalize() for s in arrays['symbols']]
466 del arrays['symbols']
468 numbers = None
469 duplicate_numbers = None
470 if 'numbers' in arrays:
471 if symbols is None:
472 numbers = arrays['numbers']
473 else:
474 duplicate_numbers = arrays['numbers']
475 del arrays['numbers']
477 initial_charges = None
478 if 'initial_charges' in arrays:
479 initial_charges = arrays['initial_charges']
480 del arrays['initial_charges']
482 positions = None
483 if 'positions' in arrays:
484 positions = arrays['positions']
485 del arrays['positions']
487 atoms = Atoms(symbols=symbols,
488 positions=positions,
489 numbers=numbers,
490 charges=initial_charges,
491 cell=cell,
492 pbc=pbc,
493 info=info)
495 # Read and set constraints
496 if 'move_mask' in arrays:
497 move_mask = arrays['move_mask'].astype(bool)
498 if properties['move_mask'][1] == 3:
499 cons = []
500 for a in range(natoms):
501 cons.append(FixCartesian(a, mask=~move_mask[a, :]))
502 atoms.set_constraint(cons)
503 elif properties['move_mask'][1] == 1:
504 atoms.set_constraint(FixAtoms(mask=~move_mask))
505 else:
506 raise XYZError('Not implemented constraint')
507 del arrays['move_mask']
509 for name, array in arrays.items():
510 atoms.new_array(name, array)
512 if duplicate_numbers is not None:
513 atoms.set_atomic_numbers(duplicate_numbers)
515 # Load results of previous calculations into SinglePointCalculator
516 results = {}
517 for key in list(atoms.info.keys()):
518 if key in per_config_properties:
519 results[key] = atoms.info[key]
520 # special case for stress- convert to Voigt 6-element form
521 if key == 'stress' and results[key].shape == (3, 3):
522 stress = results[key]
523 stress = np.array([stress[0, 0],
524 stress[1, 1],
525 stress[2, 2],
526 stress[1, 2],
527 stress[0, 2],
528 stress[0, 1]])
529 results[key] = stress
530 for key in list(atoms.arrays.keys()):
531 if (key in per_atom_properties and len(value.shape) >= 1
532 and value.shape[0] == len(atoms)):
533 results[key] = atoms.arrays[key]
534 if results != {}:
535 calculator = SinglePointCalculator(atoms, **results)
536 atoms.calc = calculator
537 return atoms
540class XYZError(IOError):
541 pass
544class XYZChunk:
545 def __init__(self, lines, natoms):
546 self.lines = lines
547 self.natoms = natoms
549 def build(self):
550 """Convert unprocessed chunk into Atoms."""
551 return _read_xyz_frame(iter(self.lines), self.natoms)
554def ixyzchunks(fd):
555 """Yield unprocessed chunks (header, lines) for each xyz image."""
556 while True:
557 line = next(fd).strip() # Raises StopIteration on empty file
558 try:
559 natoms = int(line)
560 except ValueError:
561 raise XYZError('Expected integer, found "{0}"'.format(line))
562 try:
563 lines = [next(fd) for _ in range(1 + natoms)]
564 except StopIteration:
565 raise XYZError('Incomplete XYZ chunk')
566 yield XYZChunk(lines, natoms)
569class ImageIterator:
570 """"""
572 def __init__(self, ichunks):
573 self.ichunks = ichunks
575 def __call__(self, fd, indices=-1):
576 if not hasattr(indices, 'start'):
577 if indices < 0:
578 indices = slice(indices - 1, indices)
579 else:
580 indices = slice(indices, indices + 1)
582 for chunk in self._getslice(fd, indices):
583 yield chunk.build()
585 def _getslice(self, fd, indices):
586 try:
587 iterator = islice(self.ichunks(fd), indices.start, indices.stop,
588 indices.step)
589 except ValueError:
590 # Negative indices. Go through the whole thing to get the length,
591 # which allows us to evaluate the slice, and then read it again
592 startpos = fd.tell()
593 nchunks = 0
594 for chunk in self.ichunks(fd):
595 nchunks += 1
596 fd.seek(startpos)
597 indices_tuple = indices.indices(nchunks)
598 iterator = islice(self.ichunks(fd), *indices_tuple)
599 return iterator
602iread_xyz = ImageIterator(ixyzchunks)
605@reader
606def read_xyz(fileobj, index=-1, properties_parser=key_val_str_to_dict):
607 r"""
608 Read from a file in Extended XYZ format
610 index is the frame to read, default is last frame (index=-1).
611 properties_parser is the parse to use when converting the properties line
612 to a dictionary, ``extxyz.key_val_str_to_dict`` is the default and can
613 deal with most use cases, ``extxyz.key_val_str_to_dict_regex`` is slightly
614 faster but has fewer features.
616 Extended XYZ format is an enhanced version of the `basic XYZ format
617 <http://en.wikipedia.org/wiki/XYZ_file_format>`_ that allows extra
618 columns to be present in the file for additonal per-atom properties as
619 well as standardising the format of the comment line to include the
620 cell lattice and other per-frame parameters.
622 It's easiest to describe the format with an example. Here is a
623 standard XYZ file containing a bulk cubic 8 atom silicon cell ::
625 8
626 Cubic bulk silicon cell
627 Si 0.00000000 0.00000000 0.00000000
628 Si 1.36000000 1.36000000 1.36000000
629 Si 2.72000000 2.72000000 0.00000000
630 Si 4.08000000 4.08000000 1.36000000
631 Si 2.72000000 0.00000000 2.72000000
632 Si 4.08000000 1.36000000 4.08000000
633 Si 0.00000000 2.72000000 2.72000000
634 Si 1.36000000 4.08000000 4.08000000
636 The first line is the number of atoms, followed by a comment and
637 then one line per atom, giving the element symbol and cartesian
638 x y, and z coordinates in Angstroms.
640 Here's the same configuration in extended XYZ format ::
642 8
643 Lattice="5.44 0.0 0.0 0.0 5.44 0.0 0.0 0.0 5.44" Properties=species:S:1:pos:R:3 Time=0.0
644 Si 0.00000000 0.00000000 0.00000000
645 Si 1.36000000 1.36000000 1.36000000
646 Si 2.72000000 2.72000000 0.00000000
647 Si 4.08000000 4.08000000 1.36000000
648 Si 2.72000000 0.00000000 2.72000000
649 Si 4.08000000 1.36000000 4.08000000
650 Si 0.00000000 2.72000000 2.72000000
651 Si 1.36000000 4.08000000 4.08000000
653 In extended XYZ format, the comment line is replaced by a series of
654 key/value pairs. The keys should be strings and values can be
655 integers, reals, logicals (denoted by `T` and `F` for true and false)
656 or strings. Quotes are required if a value contains any spaces (like
657 `Lattice` above). There are two mandatory parameters that any
658 extended XYZ: `Lattice` and `Properties`. Other parameters --
659 e.g. `Time` in the example above --- can be added to the parameter line
660 as needed.
662 `Lattice` is a Cartesian 3x3 matrix representation of the cell
663 vectors, with each vector stored as a column and the 9 values listed in
664 Fortran column-major order, i.e. in the form ::
666 Lattice="R1x R1y R1z R2x R2y R2z R3x R3y R3z"
668 where `R1x R1y R1z` are the Cartesian x-, y- and z-components of the
669 first lattice vector (:math:`\mathbf{a}`), `R2x R2y R2z` those of the second
670 lattice vector (:math:`\mathbf{b}`) and `R3x R3y R3z` those of the
671 third lattice vector (:math:`\mathbf{c}`).
673 The list of properties in the file is described by the `Properties`
674 parameter, which should take the form of a series of colon separated
675 triplets giving the name, format (`R` for real, `I` for integer) and
676 number of columns of each property. For example::
678 Properties="species:S:1:pos:R:3:vel:R:3:select:I:1"
680 indicates the first column represents atomic species, the next three
681 columns represent atomic positions, the next three velcoities, and the
682 last is an single integer called `select`. With this property
683 definition, the line ::
685 Si 4.08000000 4.08000000 1.36000000 0.00000000 0.00000000 0.00000000 1
687 would describe a silicon atom at position (4.08,4.08,1.36) with zero
688 velocity and the `select` property set to 1.
690 The property names `pos`, `Z`, `mass`, and `charge` map to ASE
691 :attr:`ase.atoms.Atoms.arrays` entries named
692 `positions`, `numbers`, `masses` and `charges` respectively.
694 Additional key-value pairs in the comment line are parsed into the
695 :attr:`ase.Atoms.atoms.info` dictionary, with the following conventions
697 - Values can be quoted with `""`, `''`, `[]` or `{}` (the latter are
698 included to ease command-line usage as the `{}` are not treated
699 specially by the shell)
700 - Quotes within keys or values can be escaped with `\"`.
701 - Keys with special names `stress` or `virial` are treated as 3x3 matrices
702 in Fortran order, as for `Lattice` above.
703 - Otherwise, values with multiple elements are treated as 1D arrays, first
704 assuming integer format and falling back to float if conversion is
705 unsuccessful.
706 - A missing value defaults to `True`, e.g. the comment line
707 `"cutoff=3.4 have_energy"` leads to
708 `{'cutoff': 3.4, 'have_energy': True}` in `atoms.info`.
709 - Value strings starting with `"_JSON"` are interpreted as JSON content;
710 similarly, when writing, anything which does not match the criteria above
711 is serialised as JSON.
713 The extended XYZ format is also supported by the
714 the `Ovito <http://www.ovito.org>`_ visualisation tool
715 (from `v2.4 beta
716 <http://www.ovito.org/index.php/component/content/article?id=25>`_
717 onwards).
718 """ # noqa: E501
720 if not isinstance(index, int) and not isinstance(index, slice):
721 raise TypeError('Index argument is neither slice nor integer!')
723 # If possible, build a partial index up to the last frame required
724 last_frame = None
725 if isinstance(index, int) and index >= 0:
726 last_frame = index
727 elif isinstance(index, slice):
728 if index.stop is not None and index.stop >= 0:
729 last_frame = index.stop
731 # scan through file to find where the frames start
732 try:
733 fileobj.seek(0)
734 except UnsupportedOperation:
735 fileobj = StringIO(fileobj.read())
736 fileobj.seek(0)
737 frames = []
738 while True:
739 frame_pos = fileobj.tell()
740 line = fileobj.readline()
741 if line.strip() == '':
742 break
743 try:
744 natoms = int(line)
745 except ValueError as err:
746 raise XYZError('ase.io.extxyz: Expected xyz header but got: {}'
747 .format(err))
748 fileobj.readline() # read comment line
749 for i in range(natoms):
750 fileobj.readline()
751 # check for VEC
752 nvec = 0
753 while True:
754 lastPos = fileobj.tell()
755 line = fileobj.readline()
756 if line.lstrip().startswith('VEC'):
757 nvec += 1
758 if nvec > 3:
759 raise XYZError('ase.io.extxyz: More than 3 VECX entries')
760 else:
761 fileobj.seek(lastPos)
762 break
763 frames.append((frame_pos, natoms, nvec))
764 if last_frame is not None and len(frames) > last_frame:
765 break
767 trbl = index2range(index, len(frames))
769 for index in trbl:
770 frame_pos, natoms, nvec = frames[index]
771 fileobj.seek(frame_pos)
772 # check for consistency with frame index table
773 assert int(fileobj.readline()) == natoms
774 yield _read_xyz_frame(fileobj, natoms, properties_parser, nvec)
777def output_column_format(atoms, columns, arrays,
778 write_info=True, results=None):
779 """
780 Helper function to build extended XYZ comment line
781 """
782 fmt_map = {'d': ('R', '%16.8f'),
783 'f': ('R', '%16.8f'),
784 'i': ('I', '%8d'),
785 'O': ('S', '%s'),
786 'S': ('S', '%s'),
787 'U': ('S', '%-2s'),
788 'b': ('L', ' %.1s')}
790 # NB: Lattice is stored as tranpose of ASE cell,
791 # with Fortran array ordering
792 lattice_str = ('Lattice="'
793 + ' '.join([str(x) for x in np.reshape(atoms.cell.T,
794 9, order='F')]) +
795 '"')
797 property_names = []
798 property_types = []
799 property_ncols = []
800 dtypes = []
801 formats = []
803 for column in columns:
804 array = arrays[column]
805 dtype = array.dtype
807 property_name = PROPERTY_NAME_MAP.get(column, column)
808 property_type, fmt = fmt_map[dtype.kind]
809 property_names.append(property_name)
810 property_types.append(property_type)
812 if (len(array.shape) == 1
813 or (len(array.shape) == 2 and array.shape[1] == 1)):
814 ncol = 1
815 dtypes.append((column, dtype))
816 else:
817 ncol = array.shape[1]
818 for c in range(ncol):
819 dtypes.append((column + str(c), dtype))
821 formats.extend([fmt] * ncol)
822 property_ncols.append(ncol)
824 props_str = ':'.join([':'.join(x) for x in
825 zip(property_names,
826 property_types,
827 [str(nc) for nc in property_ncols])])
829 comment_str = ''
830 if atoms.cell.any():
831 comment_str += lattice_str + ' '
832 comment_str += 'Properties={}'.format(props_str)
834 info = {}
835 if write_info:
836 info.update(atoms.info)
837 if results is not None:
838 info.update(results)
839 info['pbc'] = atoms.get_pbc() # always save periodic boundary conditions
840 comment_str += ' ' + key_val_dict_to_str(info)
842 dtype = np.dtype(dtypes)
843 fmt = ' '.join(formats) + '\n'
845 return comment_str, property_ncols, dtype, fmt
848def write_xyz(fileobj, images, comment='', columns=None,
849 write_info=True,
850 write_results=True, plain=False, vec_cell=False,
851 append=False):
852 """
853 Write output in extended XYZ format
855 Optionally, specify which columns (arrays) to include in output,
856 whether to write the contents of the `atoms.info` dict to the
857 XYZ comment line (default is True), the results of any
858 calculator attached to this Atoms. The `plain` argument
859 can be used to write a simple XYZ file with no additional information.
860 `vec_cell` can be used to write the cell vectors as additional
861 pseudo-atoms. If `append` is set to True, the file is for append (mode `a`),
862 otherwise it is overwritten (mode `w`).
864 See documentation for :func:`read_xyz()` for further details of the extended
865 XYZ file format.
866 """
867 if isinstance(fileobj, str):
868 mode = 'w'
869 if append:
870 mode = 'a'
871 fileobj = paropen(fileobj, mode)
873 if hasattr(images, 'get_positions'):
874 images = [images]
876 for atoms in images:
877 natoms = len(atoms)
879 if columns is None:
880 fr_cols = None
881 else:
882 fr_cols = columns[:]
884 if fr_cols is None:
885 fr_cols = (['symbols', 'positions']
886 + [key for key in atoms.arrays.keys() if
887 key not in ['symbols', 'positions', 'numbers',
888 'species', 'pos']])
890 if vec_cell:
891 plain = True
893 if plain:
894 fr_cols = ['symbols', 'positions']
895 write_info = False
896 write_results = False
898 per_frame_results = {}
899 per_atom_results = {}
900 if write_results:
901 calculator = atoms.calc
902 if (calculator is not None
903 and isinstance(calculator, Calculator)):
904 for key in all_properties:
905 value = calculator.results.get(key, None)
906 if value is None:
907 # skip missing calculator results
908 continue
909 if (key in per_atom_properties and len(value.shape) >= 1
910 and value.shape[0] == len(atoms)):
911 # per-atom quantities (forces, energies, stresses)
912 per_atom_results[key] = value
913 elif key in per_config_properties:
914 # per-frame quantities (energy, stress)
915 # special case for stress, which should be converted
916 # to 3x3 matrices before writing
917 if key == 'stress':
918 xx, yy, zz, yz, xz, xy = value
919 value = np.array(
920 [(xx, xy, xz), (xy, yy, yz), (xz, yz, zz)])
921 per_frame_results[key] = value
923 # Move symbols and positions to first two properties
924 if 'symbols' in fr_cols:
925 i = fr_cols.index('symbols')
926 fr_cols[0], fr_cols[i] = fr_cols[i], fr_cols[0]
928 if 'positions' in fr_cols:
929 i = fr_cols.index('positions')
930 fr_cols[1], fr_cols[i] = fr_cols[i], fr_cols[1]
932 # Check first column "looks like" atomic symbols
933 if fr_cols[0] in atoms.arrays:
934 symbols = atoms.arrays[fr_cols[0]]
935 else:
936 symbols = atoms.get_chemical_symbols()
938 if natoms > 0 and not isinstance(symbols[0], str):
939 raise ValueError('First column must be symbols-like')
941 # Check second column "looks like" atomic positions
942 pos = atoms.arrays[fr_cols[1]]
943 if pos.shape != (natoms, 3) or pos.dtype.kind != 'f':
944 raise ValueError('Second column must be position-like')
946 # if vec_cell add cell information as pseudo-atoms
947 if vec_cell:
948 pbc = list(atoms.get_pbc())
949 cell = atoms.get_cell()
951 if True in pbc:
952 nPBC = 0
953 for i, b in enumerate(pbc):
954 if b:
955 nPBC += 1
956 symbols.append('VEC' + str(nPBC))
957 pos = np.vstack((pos, cell[i]))
958 # add to natoms
959 natoms += nPBC
960 if pos.shape != (natoms, 3) or pos.dtype.kind != 'f':
961 raise ValueError(
962 'Pseudo Atoms containing cell have bad coords')
964 # Move mask
965 if 'move_mask' in fr_cols:
966 cnstr = images[0]._get_constraints()
967 if len(cnstr) > 0:
968 c0 = cnstr[0]
969 if isinstance(c0, FixAtoms):
970 cnstr = np.ones((natoms,), dtype=bool)
971 for idx in c0.index:
972 cnstr[idx] = False
973 elif isinstance(c0, FixCartesian):
974 masks = np.ones((natoms, 3), dtype=bool)
975 for i in range(len(cnstr)):
976 idx = cnstr[i].index
977 masks[idx] = cnstr[i].mask
978 cnstr = masks
979 else:
980 fr_cols.remove('move_mask')
982 # Collect data to be written out
983 arrays = {}
984 for column in fr_cols:
985 if column == 'positions':
986 arrays[column] = pos
987 elif column in atoms.arrays:
988 arrays[column] = atoms.arrays[column]
989 elif column == 'symbols':
990 arrays[column] = np.array(symbols)
991 elif column == 'move_mask':
992 arrays[column] = cnstr
993 else:
994 raise ValueError('Missing array "%s"' % column)
996 if write_results:
997 for key in per_atom_results:
998 if key not in fr_cols:
999 fr_cols += [key]
1000 else:
1001 warnings.warn('write_xyz() overwriting array "{0}" present '
1002 'in atoms.arrays with stored results '
1003 'from calculator'.format(key))
1004 arrays.update(per_atom_results)
1006 comm, ncols, dtype, fmt = output_column_format(atoms,
1007 fr_cols,
1008 arrays,
1009 write_info,
1010 per_frame_results)
1012 if plain or comment != '':
1013 # override key/value pairs with user-speficied comment string
1014 comm = comment.rstrip()
1015 if '\n' in comm:
1016 raise ValueError('Comment line should not have line breaks.')
1018 # Pack fr_cols into record array
1019 data = np.zeros(natoms, dtype)
1020 for column, ncol in zip(fr_cols, ncols):
1021 value = arrays[column]
1022 if ncol == 1:
1023 data[column] = np.squeeze(value)
1024 else:
1025 for c in range(ncol):
1026 data[column + str(c)] = value[:, c]
1028 nat = natoms
1029 if vec_cell:
1030 nat -= nPBC
1031 # Write the output
1032 fileobj.write('%d\n' % nat)
1033 fileobj.write('%s\n' % comm)
1034 for i in range(natoms):
1035 fileobj.write(fmt % tuple(data[i]))
1038# create aliases for read/write functions
1039read_extxyz = read_xyz
1040write_extxyz = write_xyz